Sorghum seed coat color correlates with the accumulation of phenolic and volatile compounds, and key regulatory genes including ABCB28, PTCD1, and ANK have been identified as central to their biosynthesis and transport.
SbC1 as a Key Regulator of Anthocyanin Biosynthesis and Stress Tolerance in Sorghum Coleoptiles
Ding et al. identified SbC1, an R2R3-MYB transcription factor, as a key regulator of anthocyanin biosynthesis in sorghum coleoptiles, highlighting its role in pigmentation, stress tolerance, and potential applications in crop improvement.
Vulnerability of Cereal Crop Landraces Under Post-Catastrophic Climate Scenarios
Though the diversity of native crop varieties (landraces) may be useful for increasing food security under novel environmental conditions, in the scenario of a soot-producing catastrophe, local genetic diversity is insufficient to ensure agricultural resilience without long-distance genotype substitutions or crop shifts.
ABA Seed Priming Enhances Drought Tolerance in Sorghum Through Hormonal Regulation and Stress-Responsive Transcriptional Networks
ABA seed priming enhances drought tolerance in sorghum by modulating hormonal pathways and activating key transcription factors like SbNAC21-1, enabling improved stress resilience without compromising growth.
G14: A Stable, High-Yielding, and Nutrient-Rich Red Sorghum Genotype for Diverse Agro-Climatic Zones of Tamil Nadu
G14 emerged as the most stable and high-yielding red sorghum genotype with superior nutritional traits, making it ideal for cultivation across diverse environments in Tamil Nadu.
Rp2: A Novel Rust Resistance Locus from Sudanese Sorghum for Broadening Genetic Diversity in U.S. Breeding Programs
By unlocking rare, evolutionarily conserved rust resistance locus from the Sudanese sorghum core collection, this work bridges global germplasm diversity with modern breeding, revealing Rp2 locus is a tractable genomic entry point for stacking durable, multi-disease resistance and strengthening the genetic resilience of U.S. sorghum improvement.
Genetic Architecture and Co-Localized QTL Underlying Plant Height and Brix Content in Sorghum
Genetic modeling and high-density QTL mapping reveal that sorghum plant height and brix content are governed by interacting major genes and polygenes, share co-localized loci that explain their phenotypic correlation, and are influenced by auxin- and carbon-fixation–related candidate genes that offer targets for breeding improved varieties.
Genetic Dissection of Seed Dormancy in Sorghum Reveals qDOR-9 as a Key Locus Linked to ABA Sensitivity, Flowering Time, and Pre-Harvest Sprouting Susceptibility
Rodríguez et al. identified and validated the qDOR-9 locus in sorghum as a key regulator of seed dormancy, linking it to ABA sensitivity and flowering time, and highlighting its unintended association with PHS susceptibility due to historical breeding for dwarfism.
High-Throughput, Nondestructive Grain Quality Analysis in Sorghum
Understanding sorghum grain quality is essential for breeding, food innovation, and industrial applications. Traits such as protein, starch composition, oil content, tannins, and phenolic compounds directly influence nutritional value, processing behavior, and end use. However, traditional laboratory assays are slow,
CSI Seminar Brent Crafton, Lanier Dabruzzi, Shelee Padgett and Zach Simon Jan 13 at 11 AM CT
The Center for Sorghum Improvement (CSI) will host a virtual seminar given by Brent Crafton, Lanier Dabruzzi, Shelee Padgett and Zach Simon, members of the Sorghum Checkoff Marketing Team, on Tuesday, January 13 at 11:00 AM CT. Their talk, “Moving