Integrative Molecular and Physiological Mechanisms Underlying Drought Tolerance in Sorghum

Drought tolerance in sorghum arises from coordinated molecular, biochemical, and physiological mechanisms, including elevated osmoprotectant levels, enhanced antioxidant defenses, and activation of ABA-dependent bZIP transcription factors that collectively maintain cellular stability and promote resilience under water stress.

Genotypic Regulation of Drought-Induced Cyanogenesis in Sorghum: Insights into Dhurrin Biosynthesis and Stress Adaptation Mechanisms

Katamreddy et al., revealed that drought-induced hydrogen cyanide (HCN) accumulation in sorghum is regulated by genotype-specific differences in dhurrin biosynthesis, membrane stability, and transcription factor networks, offering targets for developing safer, drought-tolerant forage varieties.

Stem-Preferred Gene Regulation and Meristematic Origins Underlying Transcriptional Specificity in Sorghum

A genome-wide analysis of sorghum revealed that stems possess relatively few organ-specific genes due to their meristematic origins, with two KNOX-like transcription factors, SbTALE03 and SbTALE04, emerging as key stem-preferred regulators and promising tools for targeted engineering supported by regulatory and network evidence.