Conserved gene regulatory networks underpin nitrogen metabolism across plants, with dynamic and species-specific rewiring in maize and sorghum during rapid nitrogen deprivation and recovery, revealing key transcriptional regulators that shape nitrogen use efficiency and sustainable crop productivity.
Integrative Molecular and Physiological Mechanisms Underlying Drought Tolerance in Sorghum
Drought tolerance in sorghum arises from coordinated molecular, biochemical, and physiological mechanisms, including elevated osmoprotectant levels, enhanced antioxidant defenses, and activation of ABA-dependent bZIP transcription factors that collectively maintain cellular stability and promote resilience under water stress.
Genotypic Regulation of Drought-Induced Cyanogenesis in Sorghum: Insights into Dhurrin Biosynthesis and Stress Adaptation Mechanisms
Katamreddy et al., revealed that drought-induced hydrogen cyanide (HCN) accumulation in sorghum is regulated by genotype-specific differences in dhurrin biosynthesis, membrane stability, and transcription factor networks, offering targets for developing safer, drought-tolerant forage varieties.
Transcriptional Regulation of Starch Biosynthesis in Sorghum: Functional Characterization of the B3 Transcription Factor SbLAV1
SbLAV1, a member of the B3 transcription factor family in sorghum, plays a key regulatory role in starch biosynthesis during grain development through transcriptional activation of starch biosynthesis-related genes.
Monolignol Pathway-Mediated Resistance to Sugarcane Aphid in Sorghum
Overexpression of the monolignol pathway gene SbCCoAOMT enhances sorghum resistance to sugarcane aphid through increased lignin deposition, altered phloem-feeding behavior, and accumulation of defensive phenolic compounds.
SbNAC074 Enhances Salt Tolerance via Proline Accumulation, Antioxidant Activity, and MAPK-Mediated Regulation
Overexpression of the sorghum transcription factor SbNAC074 enhances plant salt tolerance by promoting proline accumulation, boosting antioxidant enzyme activity, and interacting with SbMPK3 for phosphorylation-mediated regulation.
Salt-Tolerant Phosphorus-Solubilizing Fungi Enhance Nutrient Availability and Plant Performance in Saline Soils
Salt-tolerant phosphorus-solubilizing fungi enhance plant nutrition and stress resilience in saline soils through organic acid–mediated P mobilization, antifungal metabolite production, and adaptive physiological mechanisms, highlighting their potential as biofertilizers pending field validation.
Integrated Cytological and Multi-Omics Analysis Reveals Phenylpropanoid-Mediated Regulation of Leaf Angle Formation in Sorghum
Leaf angle formation in sorghum is driven by coordinated changes in auricle cell development, phenylpropanoid-mediated lignin biosynthesis, and associated gene expression, collectively shaping plant architecture for improved light capture.
Stem-Preferred Gene Regulation and Meristematic Origins Underlying Transcriptional Specificity in Sorghum
A genome-wide analysis of sorghum revealed that stems possess relatively few organ-specific genes due to their meristematic origins, with two KNOX-like transcription factors, SbTALE03 and SbTALE04, emerging as key stem-preferred regulators and promising tools for targeted engineering supported by regulatory and network evidence.
Multi-Omics Dissection of Iron and Zinc Homeostasis Reveals Conserved Regulatory Networks in Sorghum
Mishra et al. used multi-omics analysis in sorghum to reveal conserved gene networks and regulatory mechanisms underlying iron and zinc homeostasis, linking root uptake and leaf chloroplast function under micronutrient stress.