Sorghum in Fermentation: New Insights into Genetics, Grain Traits, and Microbial Interactions from Baijiu to African Traditional Beers

Sorghum (Sorghum bicolor) has long played a central role in the production of fermented beverages across continents, from West African dolo and pito to Chinese baijiu and emerging gluten-free craft beers in the West. A wave of recent research is shedding light on how sorghum’s grain properties, microbial interactions during fermentation, and genetic diversity influence the quality and sustainability of these beverages.

Genetic Insights into Plant Height Regulation: Enhancing Crop Resilience and Yield through Brachytic Mutants

Research on brachytic mutants, including the SbMYB110 gene in sorghum and its maize ortholog ZmMYB78, demonstrates that genetic regulation of plant height through internode elongation and hormonal pathways can enhance crop resilience and yield, offering valuable strategies for modern agricultural breeding.

Unlocking Sorghum’s Potential in Skin Care and Antioxidant Applications: A New Frontier for Kafirin Peptides

In recent years, sorghum has gained increasing attention not just as a climate-resilient staple crop, but also as a source of high-value bioactive compounds with applications beyond the food and feed sectors. A growing body of research highlights the potential of sorghum storage proteins—particularly kafirins—as a sustainable source of antioxidant peptides and cosmeceutical ingredients.

Kafirin on the Rise: Sorghum Protein Bioplastics Show Expanding Potential Across Industries

As interest grows in sustainable, plant-based alternatives to synthetic materials, sorghum’s seed storage protein, kafirin, is gaining recognition not just for its agronomic relevance but also for its remarkable biomaterial properties. Once considered a low-value byproduct of sorghum processing, kafirin is now being explored as a key ingredient in high-performance bioplastics, nanomaterials, and drug delivery systems.