Sweet Sorghum: A Resilient Crop for Bioenergy and Forage in Arid Environments Through Osmotic Stress Adaptation

Scientists from Northwest A&F University in China studied how different concentrations of PEG affect sweet sorghum’s growth and stress response, revealing that the upregulation of genes involved in osmolyte biosynthesis, including sugars and amino acids, enhances the plant’s tolerance to water scarcity.

Advancing Sorghum Genomics with Complete Telomere-to-Telomere Assemblies

Recent advancements in genomics have led to the complete telomere-to-telomere (T2T) assemblies of two sorghum genomes. These comprehensive assemblies provide valuable insights into the genetic landscape of sorghum, enhancing our understanding and enabling significant agricultural and biological discoveries. The recent studies are below : Wei et al (April-2024) – 10.1002/imt2.193 & Deng, Y et al (May-2024) – 10.1016/j.xplc.2024.100977.