Scientists researched how phenotypic plasticity in sorghum’s flowering time and plant height, driven by genetic loci and environmental factors like temperature, can be leveraged for predicting crop performance and improving adaptation to diverse and changing environments.
Harnessing UV-Stress Biology: The Unique Role of 3-Deoxyanthocyanidins in Black Sorghum
Black sorghum’s unique UV-induced production of stable 3-deoxyanthocyanidins highlights its potential as a nutraceutical powerhouse and a model for stress-responsive flavonoid biosynthesis.
Optimizing Nitrogen Management: The Role of Sorghum Cultivars and Urease Inhibitors in Sustainable Crop Rotations
A study conducted by researchers from the University of the Basque Country and AN S. Coop. found that integrating the Vilomene sorghum cultivar with urease inhibitors improves nitrogen retention, reduces environmental impact, and enhances wheat yield and quality in crop rotations.
Domestication-Driven Drought Resistance in Sorghum: The Role of Plant Architecture and Water-Conserving Traits
Domestication of Sorghum bicolor has led to drought-resistant traits, where a shorter stature and specific physiological mechanisms help conserve water and maintain grain yield under stress.
Enhancing Sorghum’s Iron Deficiency Tolerance Through Genetic Engineering
Genetic engineering of sorghum with Fe deficiency-tolerant genes enhances iron uptake, phytosiderophore secretion, and stress resilience, improving growth in alkaline soils.
Enhancing Striga Resistance in Sorghum Through Molecular Marker-Assisted Breeding of LGS1 Mutations
Striga resistance in sorghum is achieved through molecular marker-assisted breeding targeting mutations at the LGS1 gene. These lgs1 mutants exude fewer Striga-stimulatory strigolactones, providing a sustainable solution for combating this parasitic weed.
m6A RNA Modifications Regulate Salt Tolerance in Sorghum through Transcript Stability and Stress Response Pathways
This study reveals that increasing m6A RNA modifications through SbMTA overexpression enhances salt tolerance in sorghum by stabilizing stress-responsive transcripts, whereas reducing m6A levels with SbALKBH10B overexpression diminishes this resilience.
QTL Mapping of Grain Traits in Sorghum for Enhanced Maotai-Flavor Liquor Production
Zhang et. al. used QTL mapping to identify key genetic traits in sorghum that improve grain characteristics for Maotai-flavor liquor production, offering insights for targeted breeding.
Identifying Genetic Loci for Anthracnose Resistance in Ethiopian Sorghum Germplasms: A Multi-Environment GWAS Study
Birhanu et al. identified key genetic loci associated with anthracnose resistance in Ethiopian sorghum germplasms, highlighting its potential as a valuable resource for breeding resistant sorghum varieties.
Comprehensive Evaluation of Low-Nitrogen Tolerance in Sorghum: Key Traits for Enhanced Nitrogen Efficiency and Adaptation
Liu et al. evaluated the low-nitrogen tolerance of 100 sorghum genotypes, identifying key morphological, photosynthetic, and metabolic traits that enhance nitrogen efficiency and improve adaptation to nutrient-limited environments.