This review highlights how cereal-specific meristems, such as those in sorghum, contribute to complex plant architectures and offer new targets for crop improvement through advanced genomic tools.
SbC1 as a Key Regulator of Anthocyanin Biosynthesis and Stress Tolerance in Sorghum Coleoptiles
Ding et al. identified SbC1, an R2R3-MYB transcription factor, as a key regulator of anthocyanin biosynthesis in sorghum coleoptiles, highlighting its role in pigmentation, stress tolerance, and potential applications in crop improvement.
Guard Cell-Targeted TOR Expression Enhances Drought Tolerance and Water Use Efficiency in Arabidopsis
Guard cell-specific expression of AtTOR enhances drought tolerance and water use efficiency in Arabidopsis by reducing transpirational water loss while maintaining or improving photosynthetic performance through modulation of stomatal function and ABA-related signaling pathways.
Uncovering Novel Regulators of Flowering Time in Temperate-Adapted Sorghum Through Integrated Genomic and Transcriptomic Analyses
Researchers identified novel genetic regulators of flowering time in temperate-adapted, photoperiod-insensitive sorghum using expanded genome-wide and transcriptome-wide association analyses, revealing key roles for FT, MADS-box, and ageing pathway genes beyond the classical maturity loci.
Genotypic Regulation of Drought-Induced Cyanogenesis in Sorghum: Insights into Dhurrin Biosynthesis and Stress Adaptation Mechanisms
Katamreddy et al., revealed that drought-induced hydrogen cyanide (HCN) accumulation in sorghum is regulated by genotype-specific differences in dhurrin biosynthesis, membrane stability, and transcription factor networks, offering targets for developing safer, drought-tolerant forage varieties.
Transcriptional Regulation of Starch Biosynthesis in Sorghum: Functional Characterization of the B3 Transcription Factor SbLAV1
SbLAV1, a member of the B3 transcription factor family in sorghum, plays a key regulatory role in starch biosynthesis during grain development through transcriptional activation of starch biosynthesis-related genes.
Monolignol Pathway-Mediated Resistance to Sugarcane Aphid in Sorghum
Overexpression of the monolignol pathway gene SbCCoAOMT enhances sorghum resistance to sugarcane aphid through increased lignin deposition, altered phloem-feeding behavior, and accumulation of defensive phenolic compounds.
SbNAC074 Enhances Salt Tolerance via Proline Accumulation, Antioxidant Activity, and MAPK-Mediated Regulation
Overexpression of the sorghum transcription factor SbNAC074 enhances plant salt tolerance by promoting proline accumulation, boosting antioxidant enzyme activity, and interacting with SbMPK3 for phosphorylation-mediated regulation.
Genetic and Metabolic Insights into the Relationship Between Seed Coat Color, Phenolic Compounds, and Volatile Profiles in Sorghum
Sorghum seed coat color correlates with the accumulation of phenolic and volatile compounds, and key regulatory genes including ABCB28, PTCD1, and ANK have been identified as central to their biosynthesis and transport.
Vulnerability of Cereal Crop Landraces Under Post-Catastrophic Climate Scenarios
Though the diversity of native crop varieties (landraces) may be useful for increasing food security under novel environmental conditions, in the scenario of a soot-producing catastrophe, local genetic diversity is insufficient to ensure agricultural resilience without long-distance genotype substitutions or crop shifts.